A Multi-Level Semantic Fusion VoteNet for 3D Object Detection on Point Clouds

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In this paper, a Multi-Level Semantic Fusion VoteNet (MLSFVNet) is proposed to detect objects in 3D scenes. The method works on 3D point clouds captured by RGB-D camera, which can provide abundant and precise distance information of environments. The proposed method consists of three modules: the multi-level semantics fusion network, voting operation and proposal generator. To overcome the lack of semantic information, the multi-level semantics fusion network is proposed to capture the multi-level features. To predict the object centers, the voting operation is used to map the features into a feature space of the same scale and regress the object centers. The proposal generator is used to generate proposals and then predict the bounding boxes. MLSFVNet is evaluated on the popular indoor datasets SUN RGB-D and ScanNetV2. The experimental results demonstrate that the MLSFVNet proposed in this paper is an effective way to promote detection accuracy: 58.1% mAP on SUN RGB-D and 59.8% mAP on ScanNetV2.

源语言英语
主期刊名Proceeding - 2021 China Automation Congress, CAC 2021
出版商Institute of Electrical and Electronics Engineers Inc.
4514-4519
页数6
ISBN(电子版)9781665426473
DOI
出版状态已出版 - 2021
活动2021 China Automation Congress, CAC 2021 - Beijing, 中国
期限: 22 10月 202124 10月 2021

出版系列

姓名Proceeding - 2021 China Automation Congress, CAC 2021

会议

会议2021 China Automation Congress, CAC 2021
国家/地区中国
Beijing
时期22/10/2124/10/21

指纹

探究 'A Multi-Level Semantic Fusion VoteNet for 3D Object Detection on Point Clouds' 的科研主题。它们共同构成独一无二的指纹。

引用此