TY - JOUR
T1 - A Multi-Layer Cluster Based Energy Efficient Routing Scheme for UWSNs
AU - Khan, Wahab
AU - Wang, Hua
AU - Anwar, Muhammad Shahid
AU - Ayaz, Muhammad
AU - Ahmad, Sadique
AU - Ullah, Inam
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2019
Y1 - 2019
N2 - Underwater Wireless Sensor Networks (UWSNs) have emerged as a remarkable interest for scholars worldwide in terms of various applications such as monitoring offshore oil and gas reservoirs, pollution, oceans for defense, and other applications such as tsunami. Terrestrial Wireless Sensor Networks (TWSN) and UWSNs share many characteristics apart from having different communication medium and working environment as UWSNs face the challenges of low-bandwidth, long latency, and high bit error rate. These have caused for UWSNs many problems such as low reliability, packet retransmission, and high consumption of energy. To alleviate the aforementioned issues, many techniques have been proposed. However, most of them merely consider the issue of hotspot which occurs due to the unbalanced transmission of load on sensor nodes near the surface sink. In this article, we propose a multi-layer cluster-based Energy Efficient (MLCEE) protocol for UWSNs to address the issue of hotspot and energy consumption. There are different stages in MLCEE, first of which is the division of the whole network in layers, the second is clustering of the nodes at same layers. In the last stage of transmission, the cluster head (CH) selects the next hop among the CHs based on greater fitness value, small Hopid and small layer number. To mitigate the issue of hotspot, the first layer remains un-clustered and any node in the first layer transfers data to the sink directly while cluster heads (CHs) are selected based on Bayesian Probability and residual energy. The simulation results of the proposed technique, done using MATLAB, have revealed that MLCEE achieves superior performance than the other techniques with regard to the network lifetime, energy consumption, and data transmission amount.
AB - Underwater Wireless Sensor Networks (UWSNs) have emerged as a remarkable interest for scholars worldwide in terms of various applications such as monitoring offshore oil and gas reservoirs, pollution, oceans for defense, and other applications such as tsunami. Terrestrial Wireless Sensor Networks (TWSN) and UWSNs share many characteristics apart from having different communication medium and working environment as UWSNs face the challenges of low-bandwidth, long latency, and high bit error rate. These have caused for UWSNs many problems such as low reliability, packet retransmission, and high consumption of energy. To alleviate the aforementioned issues, many techniques have been proposed. However, most of them merely consider the issue of hotspot which occurs due to the unbalanced transmission of load on sensor nodes near the surface sink. In this article, we propose a multi-layer cluster-based Energy Efficient (MLCEE) protocol for UWSNs to address the issue of hotspot and energy consumption. There are different stages in MLCEE, first of which is the division of the whole network in layers, the second is clustering of the nodes at same layers. In the last stage of transmission, the cluster head (CH) selects the next hop among the CHs based on greater fitness value, small Hopid and small layer number. To mitigate the issue of hotspot, the first layer remains un-clustered and any node in the first layer transfers data to the sink directly while cluster heads (CHs) are selected based on Bayesian Probability and residual energy. The simulation results of the proposed technique, done using MATLAB, have revealed that MLCEE achieves superior performance than the other techniques with regard to the network lifetime, energy consumption, and data transmission amount.
KW - BN Bayesian probability (BN)
KW - Underwater wireless sensor networks (UWSNs)
KW - cluster head (CH) selection
KW - dynamic clustering
KW - energy efficiency
KW - network lifetime
UR - http://www.scopus.com/inward/record.url?scp=85068339619&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2019.2922060
DO - 10.1109/ACCESS.2019.2922060
M3 - Article
AN - SCOPUS:85068339619
SN - 2169-3536
VL - 7
SP - 77398
EP - 77410
JO - IEEE Access
JF - IEEE Access
M1 - 8734057
ER -