A Machine Learning Classification Approach for Solving Biomedical Inverse Scattering Problem

Zi He, Naike Du, Jing Wang, Xiuzhu Ye*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This article proposes a U-Net convolution neural network (U-net CNN) with segmentation capability, to classify the types of human tissue in the biomedical inverse scattering scenario. The inverse scattering imaging algorithm, subspace-based optimization method (SOM) is firstly used to obtain distribution of dielectric permittivity of human tissues. The obtained result is input into the pre-trained U-Net CNN, to output the precise segmentation masks (classification images). Numerical results using synthetic data is used to validate the feasibility of precise classification of human tissues imaging.

源语言英语
主期刊名2024 IEEE International Conference on Computational Electromagnetics, ICCEM 2024 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350383317
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Computational Electromagnetics, ICCEM 2024 - Nanjing, 中国
期限: 15 4月 202417 4月 2024

出版系列

姓名2024 IEEE International Conference on Computational Electromagnetics, ICCEM 2024 - Proceedings

会议

会议2024 IEEE International Conference on Computational Electromagnetics, ICCEM 2024
国家/地区中国
Nanjing
时期15/04/2417/04/24

指纹

探究 'A Machine Learning Classification Approach for Solving Biomedical Inverse Scattering Problem' 的科研主题。它们共同构成独一无二的指纹。

引用此