TY - JOUR
T1 - A hybrid self-adaptive Particle Swarm Optimization-Genetic Algorithm-Radial Basis Function model for annual electricity demand prediction
AU - Yu, Shiwei
AU - Wang, Ke
AU - Wei, Yi Ming
N1 - Publisher Copyright:
© 2014 Elsevier Ltd. All rights reserved.
PY - 2015/2
Y1 - 2015/2
N2 - The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO-GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO-GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7-11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h.
AB - The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO-GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO-GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7-11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h.
KW - Electricity demand prediction
KW - Genetic Algorithm
KW - Mixed coding
KW - Particle Swarm Optimization
KW - Radial Basis Function neural network
UR - http://www.scopus.com/inward/record.url?scp=84919667045&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2014.11.059
DO - 10.1016/j.enconman.2014.11.059
M3 - Article
AN - SCOPUS:84919667045
SN - 0196-8904
VL - 91
SP - 176
EP - 185
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -