摘要
The neural networks on 3D data and applications have emerged in the past five years. However, there are only a few dedicated hardware designs were proposed for 3D data and algorithms. Meanwhile, they lack flexibility and adaptation for the fast evolvement of software algorithms. We propose a heterogeneous accelerator design on Xilinx Zynq and Zynq UltraScale+ platform. An innovative vector pipeline is designed in the accelerator that can reach the near limitation of BRAM frequency, and it gives the final design frequency closure at 550MHz with 100% DSP usage.
源语言 | 英语 |
---|---|
主期刊名 | IEEE International Symposium on Circuits and Systems, ISCAS 2022 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 2725-2729 |
页数 | 5 |
ISBN(电子版) | 9781665484855 |
DOI | |
出版状态 | 已出版 - 2022 |
活动 | 2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, 美国 期限: 27 5月 2022 → 1 6月 2022 |
出版系列
姓名 | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
卷 | 2022-May |
ISSN(印刷版) | 0271-4310 |
会议
会议 | 2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 |
---|---|
国家/地区 | 美国 |
市 | Austin |
时期 | 27/05/22 → 1/06/22 |
指纹
探究 'A Heterogeneous FPGA-based Accelerator Design for Efficient and Low-cost Point Clouds Deep Learning Inference' 的科研主题。它们共同构成独一无二的指纹。引用此
Xu, J., Wang, Y., & Zhouy, W. (2022). A Heterogeneous FPGA-based Accelerator Design for Efficient and Low-cost Point Clouds Deep Learning Inference. 在 IEEE International Symposium on Circuits and Systems, ISCAS 2022 (页码 2725-2729). (Proceedings - IEEE International Symposium on Circuits and Systems; 卷 2022-May). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISCAS48785.2022.9937592