A Heterogeneous FPGA-based Accelerator Design for Efficient and Low-cost Point Clouds Deep Learning Inference

Jinling Xu, Yonggui Wang, Wenbiao Zhouy*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The neural networks on 3D data and applications have emerged in the past five years. However, there are only a few dedicated hardware designs were proposed for 3D data and algorithms. Meanwhile, they lack flexibility and adaptation for the fast evolvement of software algorithms. We propose a heterogeneous accelerator design on Xilinx Zynq and Zynq UltraScale+ platform. An innovative vector pipeline is designed in the accelerator that can reach the near limitation of BRAM frequency, and it gives the final design frequency closure at 550MHz with 100% DSP usage.

源语言英语
主期刊名IEEE International Symposium on Circuits and Systems, ISCAS 2022
出版商Institute of Electrical and Electronics Engineers Inc.
2725-2729
页数5
ISBN(电子版)9781665484855
DOI
出版状态已出版 - 2022
活动2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, 美国
期限: 27 5月 20221 6月 2022

出版系列

姓名Proceedings - IEEE International Symposium on Circuits and Systems
2022-May
ISSN(印刷版)0271-4310

会议

会议2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
国家/地区美国
Austin
时期27/05/221/06/22

指纹

探究 'A Heterogeneous FPGA-based Accelerator Design for Efficient and Low-cost Point Clouds Deep Learning Inference' 的科研主题。它们共同构成独一无二的指纹。

引用此

Xu, J., Wang, Y., & Zhouy, W. (2022). A Heterogeneous FPGA-based Accelerator Design for Efficient and Low-cost Point Clouds Deep Learning Inference. 在 IEEE International Symposium on Circuits and Systems, ISCAS 2022 (页码 2725-2729). (Proceedings - IEEE International Symposium on Circuits and Systems; 卷 2022-May). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISCAS48785.2022.9937592