TY - JOUR
T1 - A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes for simultaneous voltammetric determination of dopamine, serotonin and melatonin
AU - Tang, Shanshan
AU - Liang, Axin
AU - Liu, Miao
AU - Wang, Wei
AU - Zhang, Fulai
AU - Luo, Aiqin
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Korean Carbon Society.
PY - 2023/12
Y1 - 2023/12
N2 - A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes (e-CS/MWCNTs/GCE) was used as a working electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and melatonin (MT), which were related to circadian rhythms. The electrochemical characterizations of the working electrode were carried out via electrochemical impedance spectroscopy and chronocoulometry. It was found that electrochemical modification method, that was cyclic voltammetry, may can cause continuous CS polymerization on MWCNTs surface to form a dense membrane with more active sites on the electrode, and the electrochemically active surface area of e-CS/MWCNTs/GCE obtained was about 7 times that of GCE. The electrochemical behaviour of DA, 5-HT and MT on working electrode were carried out via differential pulse voltammetry and cyclic voltammetry. The results showed that e-CS/MWCNTs/GCE solved the problem that the bare electrode could not detect three substances simultaneously, and can catalyze oxidation potential difference as low as 0.17 V of two substances reaction at the same time, indicating very good electrocatalytic activity. By optimizing the detection conditions, the sensor showed a good linear response to DA, 5-HT and MT in the range of 20-1000 μmol/L, 9-1000 μmol/L and 20-1000 μmol/L, and the detection limits were 12 μmol/L, 10 μmol/L and 22 μmol/L (S/N = 3), respectively. In addition, the proposed sensor was successfully applied to the simultaneous detection of DA, 5-HT and MT in human saliva samples.
AB - A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes (e-CS/MWCNTs/GCE) was used as a working electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and melatonin (MT), which were related to circadian rhythms. The electrochemical characterizations of the working electrode were carried out via electrochemical impedance spectroscopy and chronocoulometry. It was found that electrochemical modification method, that was cyclic voltammetry, may can cause continuous CS polymerization on MWCNTs surface to form a dense membrane with more active sites on the electrode, and the electrochemically active surface area of e-CS/MWCNTs/GCE obtained was about 7 times that of GCE. The electrochemical behaviour of DA, 5-HT and MT on working electrode were carried out via differential pulse voltammetry and cyclic voltammetry. The results showed that e-CS/MWCNTs/GCE solved the problem that the bare electrode could not detect three substances simultaneously, and can catalyze oxidation potential difference as low as 0.17 V of two substances reaction at the same time, indicating very good electrocatalytic activity. By optimizing the detection conditions, the sensor showed a good linear response to DA, 5-HT and MT in the range of 20-1000 μmol/L, 9-1000 μmol/L and 20-1000 μmol/L, and the detection limits were 12 μmol/L, 10 μmol/L and 22 μmol/L (S/N = 3), respectively. In addition, the proposed sensor was successfully applied to the simultaneous detection of DA, 5-HT and MT in human saliva samples.
KW - Electrochemical sensor
KW - Electrodeposited chitosan
KW - MWCNTs
KW - Simultaneous detection
UR - http://www.scopus.com/inward/record.url?scp=85163091032&partnerID=8YFLogxK
U2 - 10.1007/s42823-023-00556-6
DO - 10.1007/s42823-023-00556-6
M3 - Article
AN - SCOPUS:85163091032
SN - 1976-4251
VL - 33
SP - 2129
EP - 2139
JO - Carbon Letters
JF - Carbon Letters
IS - 7
ER -