A GLANCE-AND-GAZE NETWORK FOR RESPIRATORY SOUND CLASSIFICATION

Shuai Yu, Yiwei Ding, Kun Qian*, Bin Hu*, Wei Li, Björn W. Schuller

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

A plethora of great successes has been achieved by the existing convolutional neural networks (CNN) for respiratory sound classification. Nevertheless, simultaneously capturing both the local and global features can never be an easy task due to the limitation of a CNN's structure. In this contribution, we propose a novel glance-and-gaze network to address the aforementioned issue. The glance block aims to learn global information, while the gaze block is responsible for learning local patterns and suppressing the noises that attenuates the final performance. In the proposed method, both the global and local information can be extracted. Moreover, the spectral and temporal representations can be learnt via a feature fusion module. Experimental results on the largest public respiratory sound database demonstrate that the proposed model outperforms the state-of-the-art methods.

源语言英语
主期刊名2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
9007-9011
页数5
ISBN(电子版)9781665405409
DOI
出版状态已出版 - 2022
活动47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, 新加坡
期限: 23 5月 202227 5月 2022

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

会议

会议47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
国家/地区新加坡
Virtual, Online
时期23/05/2227/05/22

指纹

探究 'A GLANCE-AND-GAZE NETWORK FOR RESPIRATORY SOUND CLASSIFICATION' 的科研主题。它们共同构成独一无二的指纹。

引用此