A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection

Jiaxing Wang, Huaijuan Zhou, Geyong Guo, Tao Cheng, Xiaochun Peng, Xin Mao, Jinhua Li, Xianlong Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

32 引用 (Scopus)

摘要

Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell-bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices.

源语言英语
页(从-至)3121-3136
页数16
期刊International Journal of Nanomedicine
12
DOI
出版状态已出版 - 18 4月 2017
已对外发布

指纹

探究 'A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection' 的科研主题。它们共同构成独一无二的指纹。

引用此