TY - GEN
T1 - A Framework of Knowledge Graph-Enhanced Large Language Model Based on Question Decomposition and Atomic Retrieval
AU - Li, Yading
AU - Song, Dandan
AU - Zhou, Changzhi
AU - Tian, Yuhang
AU - Wang, Hao
AU - Yang, Ziyi
AU - Zhang, Shuhao
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - Knowledge graphs (KGs) can provide explainable reasoning for large language models (LLMs), alleviating their hallucination problem. Knowledge graph question answering (KGQA) is a typical benchmark to evaluate the methods enhancing LLMs with KG. Previous methods on KG-enhanced LLM for KGQA either enhance LLMs with KG retrieval in a single round or perform multi-hop KG reasoning in multiple rounds with LLMs. Both of them conduct retrieving and reasoning based solely on the whole original question, without any processing to the question. To tackle this limitation, we propose a framework of KG-enhanced LLM based on question decomposition and atomic retrieval, called KELDaR. We introduce question decomposition tree as the framework for LLM reasoning. This approach extracts the implicit information of reasoning steps within complex questions, serving as a guide to facilitate atomic retrieval on KG targeting the atomic-level simple questions at leaves of the tree. Additionally, we design strategies for atomic retrieval, which extract and retrieve question-relevant KG subgraphs to assist the few-shot LLM in answering atomic-level questions. Experiments on KGQA datasets demonstrate that our framework outperforms existing reasoning-based baselines. And in a low-cost setting without additional training or fine-tuning, our framework achieves competitive or superior results compared to most existing training-based baselines.
AB - Knowledge graphs (KGs) can provide explainable reasoning for large language models (LLMs), alleviating their hallucination problem. Knowledge graph question answering (KGQA) is a typical benchmark to evaluate the methods enhancing LLMs with KG. Previous methods on KG-enhanced LLM for KGQA either enhance LLMs with KG retrieval in a single round or perform multi-hop KG reasoning in multiple rounds with LLMs. Both of them conduct retrieving and reasoning based solely on the whole original question, without any processing to the question. To tackle this limitation, we propose a framework of KG-enhanced LLM based on question decomposition and atomic retrieval, called KELDaR. We introduce question decomposition tree as the framework for LLM reasoning. This approach extracts the implicit information of reasoning steps within complex questions, serving as a guide to facilitate atomic retrieval on KG targeting the atomic-level simple questions at leaves of the tree. Additionally, we design strategies for atomic retrieval, which extract and retrieve question-relevant KG subgraphs to assist the few-shot LLM in answering atomic-level questions. Experiments on KGQA datasets demonstrate that our framework outperforms existing reasoning-based baselines. And in a low-cost setting without additional training or fine-tuning, our framework achieves competitive or superior results compared to most existing training-based baselines.
UR - http://www.scopus.com/inward/record.url?scp=85217617857&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85217617857
T3 - EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
SP - 11472
EP - 11485
BT - EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
A2 - Al-Onaizan, Yaser
A2 - Bansal, Mohit
A2 - Chen, Yun-Nung
PB - Association for Computational Linguistics (ACL)
T2 - 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Y2 - 12 November 2024 through 16 November 2024
ER -