@inproceedings{ceb4b3a775e349ca96e40ea7af3a63fd,
title = "A dynamic regulating mechanism for increased airflow speed range in micro piezoelectric turbines",
abstract = "The paper reports the design and fabrication of a micro-planar spring for a dynamic regulating mechanism to decrease the cut-in (start-up) airflow speed of a piezoelectric turbine. This mechanism is implemented by adjusting the magnetic coupling between the turbine rotor and a piezoelectric cantilever using the spring. Varied spring shapes and dimensions were analyzed with the finite element method (FEM) to optimize the structure. A micro spring with an ultra-low spring constant of 0.78 N/m was fabricated from titanium foil by laser machining. The spring was installed into a miniaturized air turbine to achieve the self-regulation. The cut-in speed was 2.34 m/s, showing a 30% improvement against a non-regulated turbine.",
author = "Hailing Fu and Mario D'Auria and Guangbin Dou and Yeatman, {Eric M.}",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 29th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2016 ; Conference date: 24-01-2016 Through 28-01-2016",
year = "2016",
month = feb,
day = "26",
doi = "10.1109/MEMSYS.2016.7421857",
language = "English",
series = "Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1220--1223",
booktitle = "MEMS 2016 - 29th IEEE International Conference on Micro Electro Mechanical Systems",
address = "United States",
}