A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry

Yi Ming Wei*, Jia Ning Kang, Bi Ying Yu, Hua Liao, Yun Fei Du

*此作品的通讯作者

    科研成果: 期刊稿件文章同行评审

    29 引用 (Scopus)

    摘要

    The utilization of shale gas has become one of the important options to transit into low-carbon economy in the world and its vigorous development relies on successful technology revolution to a great extent. Based on patent data, this paper analyzes the development trends and the status quo of technical innovation of shale gas quantitatively by means of patent maps. A new dynamic model named Forward-Citation Full Path (FCFP) is investigated to identify the key development paths in technology clusters and monitor potential breakthrough technologies on those key paths. Then we employ topic modeling and text mining for patent abstracts to explore the potential promising topics with high innovation activeness in aid of providing specific references for development and foresight of the shale gas technology. The results show that: (1) The patent center of shale gas has been transferring from North American to the Asia-Pacific region and the technological innovation is mainly driven by preferential tax policy and loose environmental regimes. (2) Current hotspots of shale gas technology are production technique including stimulation treatments, environmental protection technology of fracturing fluid and geological prospecting technology. (3) There are five potential topics with high innovation activeness identified by topic modeling and text mining which are synthetic carbon oxide, hydraulic fracturing, fracturing propping agents, horizontal well, and technologies of reservoir exploration and modeling. (4) By means of visualization of technology clusters, it is found that promising technologies are refined simulation technology for shale gas exploration, multi-interval fracturing techniques in horizontal wells with deep pay zones, water treatment and environmental protection technology in shale gas production. (5) The suggested dynamic FCFP model can effectively identify the key development paths and monitor potential breakthrough technology of shale gas.

    源语言英语
    页(从-至)769-780
    页数12
    期刊Applied Energy
    205
    DOI
    出版状态已出版 - 1 11月 2017

    指纹

    探究 'A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry' 的科研主题。它们共同构成独一无二的指纹。

    引用此