A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging

Qing Liu, Hong Bo Cheng, Rui Ma, Mingming Yu, Yuanyu Huang, Lele Li, Jian Zhao*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

20 引用 (Scopus)

摘要

DNA-based nanostructures have shown curative potential in drug delivery and anti-tumor therapy. However, the applications of such systems are limited by the lack of precise control over the space and duration of drug release. Here, we report a near-infrared (NIR) light-guided DNA nanodevice that enables controlled drug release for precise tumor imaging and therapy. The DNA nanodevice is constructed by engineering GC-rich DNA duplexes with an ultraviolet (UV) light labile moiety and further modification onto the surface of upconversion nanoparticles (UCNPs). The chemotherapeutic drug (doxorubicin, Dox) is intercalated into the GC motif of DNA duplexes, where the fluorescence signal of Dox is markedly quenched. Upon NIR light irradiation, the UCNPs acting as energy transducers emit UV light that can break the photolabile moiety in DNA duplexes, resulting in the controlled release of Dox and recovery of their fluorescence signal. We present that this DNA nanodevice is not only able to selectively induce tumor cells apoptosis via NIR light-mediated activation, but also enables in situ imaging and monitoring of drug release. Therefore, this modular strategy opens a window for remotely controlled drug delivery.

源语言英语
文章编号101747
期刊Nano Today
48
DOI
出版状态已出版 - 2月 2023

指纹

探究 'A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging' 的科研主题。它们共同构成独一无二的指纹。

引用此