A discussion of a homogenization procedure for a degenerate linear hyperbolic-parabolic problem

L. Flodén, A. Holmbom*, P. Jonasson, T. Lobkova, M. Olsson Lindberg, Y. Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

We study the homogenization of a hyperbolic-parabolic PDE with oscillations in one fast spatial scale. Moreover, the first order time derivative has a degenerate coefficient passing to infinity when ϵ→0. We obtain a local problem which is of elliptic type, while the homogenized problem is also in some sense an elliptic problem but with the limit for ϵ-1tuϵ as an undetermined extra source term in the right-hand side. The results are somewhat surprising and work remains to obtain a fully rigorous treatment. Hence the last section is devoted to a discussion of the reasonability of our conjecture including numerical experiments.

源语言英语
主期刊名ICNPAA 2016 World Congress
主期刊副标题11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences
编辑Seenith Sivasundaram
出版商American Institute of Physics Inc.
ISBN(电子版)9780735414648
DOI
出版状态已出版 - 27 1月 2017
已对外发布
活动11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016 - La Rochelle, 法国
期限: 4 7月 20168 7月 2016

出版系列

姓名AIP Conference Proceedings
1798
ISSN(印刷版)0094-243X
ISSN(电子版)1551-7616

会议

会议11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016
国家/地区法国
La Rochelle
时期4/07/168/07/16

指纹

探究 'A discussion of a homogenization procedure for a degenerate linear hyperbolic-parabolic problem' 的科研主题。它们共同构成独一无二的指纹。

引用此

Flodén, L., Holmbom, A., Jonasson, P., Lobkova, T., Lindberg, M. O., & Zhang, Y. (2017). A discussion of a homogenization procedure for a degenerate linear hyperbolic-parabolic problem. 在 S. Sivasundaram (编辑), ICNPAA 2016 World Congress: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences 文章 020177 (AIP Conference Proceedings; 卷 1798). American Institute of Physics Inc.. https://doi.org/10.1063/1.4972769