TY - JOUR
T1 - A Deep Learning Based Traffic State Estimation Method for Mixed Traffic Flow Environment
AU - Ding, Fan
AU - Zhang, Yongyi
AU - Chen, Rui
AU - Liu, Zhanwen
AU - Tan, Huachun
N1 - Publisher Copyright:
© 2022 Fan Ding et al.
PY - 2022
Y1 - 2022
N2 - Traffic state estimation plays a fundamental role in traffic control and management. In the connected vehicles (CVs) environment, more traffic-related data perceived and interacted by CVs can be used to estimate traffic state. However, when there is a low penetration rate of CVs, the data collected from CVs would be inadequate. Meanwhile, the representativeness of the collected data is positively correlated with the penetration rate. This article presents a traffic state estimation method based on a deep learning algorithm under a low and dynamic CVs penetration rate environment. Specifically, we design a K-Nearest Neighbor (KNN) data filling model integrating acceleration data to solve the problem of insufficient data. This method can fuse the time feature of speed by acceleration modification and mine the distribution features of speed by KNN. In addition, to reduce the estimation error caused by penetration rate, we design a Long Short-Term Memory (LSTM) model, which uses penetration rate estimated by Macroscopic Fundamental Diagram (MFD) as one of the input factors. Finally, we use the concept of operational efficiency for reference, dividing traffic state into three categories according to the estimated speed: free flow, optimal flow, and congestion. SUMO is used to simulate traffic cases under different penetration rates to evaluate our scheme. The results suggest that our data filling model can significantly improve filling accuracy under a low penetration rate; there is also a better performance of our estimation model than that of other comparison models in both low and dynamic penetration rates.
AB - Traffic state estimation plays a fundamental role in traffic control and management. In the connected vehicles (CVs) environment, more traffic-related data perceived and interacted by CVs can be used to estimate traffic state. However, when there is a low penetration rate of CVs, the data collected from CVs would be inadequate. Meanwhile, the representativeness of the collected data is positively correlated with the penetration rate. This article presents a traffic state estimation method based on a deep learning algorithm under a low and dynamic CVs penetration rate environment. Specifically, we design a K-Nearest Neighbor (KNN) data filling model integrating acceleration data to solve the problem of insufficient data. This method can fuse the time feature of speed by acceleration modification and mine the distribution features of speed by KNN. In addition, to reduce the estimation error caused by penetration rate, we design a Long Short-Term Memory (LSTM) model, which uses penetration rate estimated by Macroscopic Fundamental Diagram (MFD) as one of the input factors. Finally, we use the concept of operational efficiency for reference, dividing traffic state into three categories according to the estimated speed: free flow, optimal flow, and congestion. SUMO is used to simulate traffic cases under different penetration rates to evaluate our scheme. The results suggest that our data filling model can significantly improve filling accuracy under a low penetration rate; there is also a better performance of our estimation model than that of other comparison models in both low and dynamic penetration rates.
UR - http://www.scopus.com/inward/record.url?scp=85128656626&partnerID=8YFLogxK
U2 - 10.1155/2022/2166345
DO - 10.1155/2022/2166345
M3 - Article
AN - SCOPUS:85128656626
SN - 0197-6729
VL - 2022
JO - Journal of Advanced Transportation
JF - Journal of Advanced Transportation
M1 - 2166345
ER -