A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance

Xuting Jin, Guoqiang Sun, Guofeng Zhang, Hongsheng Yang, Yukun Xiao, Jian Gao, Zhipan Zhang*, Liangti Qu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

80 引用 (Scopus)

摘要

The development of compressible supercapacitors (SCs) that is tolerant to wide temperature range has been severely hindered due to the poor ionic conductivity and absence of extra functions in conventional polymer electrolytes. Herein, a highly conductive and compressible hydrogel polyelectrolyte has been prepared from polyacrylamide cross-linked by methacrylated graphene oxide (MGO-PAM) and the polyelectrolyte can maintain its excellent elasticity at −30 °C as well as its original shape at 100 °C. As a result, the SC based on the MGO-PAM polyelectrolyte outperformed those fabricated with the conventional poly(vinyl alcohol) (PVA)/H 2 SO 4 electrolyte over a wide temperature window between −30 and 100 °C. Meanwhile, the device shows an excellent cycling stability (capacitance retention of 93.3% after 8,000 cycles at −30 °C and 76.5 % after 4,000 cycles under 100 °C) and a reversible compressibility (a high capacitance retention of 94.1% under 80% compression). Therefore, the MGO-PAM polyelectrolyte enables the fabrication of compressible SCs with a wide operating temperature, rendering new insights for developing next-generation robust and multifunctional energy-storage devices. [Figure not available: see fulltext.].

源语言英语
期刊Nano Research
DOI
出版状态已接受/待刊 - 2019

指纹

探究 'A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance' 的科研主题。它们共同构成独一无二的指纹。

引用此