A convolutional neural network approach for semaphore flag signaling recognition

Qian Zhao, Yawei Li, Ning Yang, Yuliang Yang, Mengyu Zhu

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

This paper proposes a recognition approach for Semaphore flag signaling (SFS). We use the improved convolutional neural network (CNN) to classify the SFS. In the experiment we made Semaphore flag signaling system (SFSS), which based on CNN. The image can be directly input into the SFSS. Each alphabetic character or control signal is indicated by a particular flag pattern. We shoot the SFS videos by a monocular camera. The dataset is divided into five SFS classes. The improved CNN uses the Relu activation function, the max-pooling methods. It's alway use SFS data whitening and grayscale preprocessing methods. The improved CNN provides for partial invariance to different light, angles, scenes, and a group of people. The result shows that our approach classifies five SFS classes with 99.95% accuracy.

源语言英语
主期刊名2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016
出版商Institute of Electrical and Electronics Engineers Inc.
466-470
页数5
ISBN(电子版)9781509023769
DOI
出版状态已出版 - 27 3月 2017
活动2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016 - Beijing, 中国
期限: 13 8月 201615 8月 2016

出版系列

姓名2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016

会议

会议2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016
国家/地区中国
Beijing
时期13/08/1615/08/16

指纹

探究 'A convolutional neural network approach for semaphore flag signaling recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此