A Conditional Generative Adversarial Network aided Few-mode Fiber Channel Modeling for large-capacity optical fiber communication

Mengzhu Yuan*, Huan Chang*, Ming Ma, Ran Gao, Fei Wang, Qi Zhang, Dong Guo, Zhipei Li, Fu Wang, Xin Huang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, a conditional generative adversarial network (CGAN) aided channel modeling technique is proposed for few-mode fiber (FMF) optical communication. Simulation results demonstrate the proposed CGAN-aided FMF modeling technique achieve an attractive effect on modelling accuracy.

源语言英语
主期刊名2023 21st International Conference on Optical Communications and Networks, ICOCN 2023
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350343502
DOI
出版状态已出版 - 2023
活动21st International Conference on Optical Communications and Networks, ICOCN 2023 - Qufu, 中国
期限: 31 7月 20233 8月 2023

出版系列

姓名2023 21st International Conference on Optical Communications and Networks, ICOCN 2023

会议

会议21st International Conference on Optical Communications and Networks, ICOCN 2023
国家/地区中国
Qufu
时期31/07/233/08/23

指纹

探究 'A Conditional Generative Adversarial Network aided Few-mode Fiber Channel Modeling for large-capacity optical fiber communication' 的科研主题。它们共同构成独一无二的指纹。

引用此