摘要
A complex-valued triplet-input neural network for fiber nonlinearity compensation is proposed. Numerical results show 0.2 dB Q factor improvement and 25% computational complexity reduction, compared with the real-valued triplet-input neural network.
源语言 | 英语 |
---|---|
文章编号 | JS2B.3 |
期刊 | Optics InfoBase Conference Papers |
出版状态 | 已出版 - 2021 |
活动 | 26th Optoelectronics and Communications Conference, OECC 2021 - Virtual, Online, 中国 期限: 3 7月 2021 → 7 7月 2021 |
指纹
探究 'A complex-valued neural network for fiber nonlinearity mitigation' 的科研主题。它们共同构成独一无二的指纹。引用此
He, P., Yang, A., Guo, P., Qiao, Y., & Xin, X. (2021). A complex-valued neural network for fiber nonlinearity mitigation. Optics InfoBase Conference Papers, 文章 JS2B.3.