A Cloud-Based Trajectory Data Management System?

Ruiyuan Li, Sijie Ruan, Jie Bao, Yu Zheng*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

17 引用 (Scopus)

摘要

With the rapid development of location-acquisition techniques, massive trajectories are continuously generated. Many urban applications rely heavily on the data mining/analysis results of massive trajectory data. This demo presents a holistic data management system for both historical and real-time trajectory records based on a cloud platform, such as Microsoft Azure. The proposed system is able to efficiently support a variety of trajectory queries, including ID-Temporal query, Spatio-Temporal query, and Path-Temporal query. With these queries, we demonstrate that different urban applications can be realized in a much easier way.

源语言英语
主期刊名GIS
主期刊副标题Proceedings of the ACM International Symposium on Advances in Geographic Information Systems
编辑Siva Ravada, Erik Hoel, Roberto Tamassia, Shawn Newsam, Goce Trajcevski, Goce Trajcevski
出版商Association for Computing Machinery
ISBN(印刷版)9781450354905
DOI
出版状态已出版 - 7 11月 2017
已对外发布
活动25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2017 - Redondo Beach, 美国
期限: 7 11月 201710 11月 2017

出版系列

姓名GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems
2017-November

会议

会议25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2017
国家/地区美国
Redondo Beach
时期7/11/1710/11/17

指纹

探究 'A Cloud-Based Trajectory Data Management System?' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, R., Ruan, S., Bao, J., & Zheng, Y. (2017). A Cloud-Based Trajectory Data Management System?. 在 S. Ravada, E. Hoel, R. Tamassia, S. Newsam, G. Trajcevski, & G. Trajcevski (编辑), GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems 文章 96 (GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems; 卷 2017-November). Association for Computing Machinery. https://doi.org/10.1145/3139958.3139990