TY - JOUR
T1 - A characterization for discrete quantum group
AU - Liu, Ming
AU - Jiang, Lining
AU - Zhang, Guosheng
PY - 2005
Y1 - 2005
N2 - Based on the work of A.Van Daele, E.G.Effros and Z.J.Ruan on mul-tiplier Hopf algerba and discrete quantum group, this paper states that discrete quantum group (A, Δ) is exactly the set {(ω - ⊗)Δ(a)|a ε A; ω 2 A*}, where A* is the space of all reduced functionals on A. Furthermore, this paper characterizes (A, Δ) as an algebraic quantum group with a standard *-operation and a special element z ε A such that (1 ⊗ a)Δ(z) = Δ(z)(a ⊗ 1) (∀a ε A).
AB - Based on the work of A.Van Daele, E.G.Effros and Z.J.Ruan on mul-tiplier Hopf algerba and discrete quantum group, this paper states that discrete quantum group (A, Δ) is exactly the set {(ω - ⊗)Δ(a)|a ε A; ω 2 A*}, where A* is the space of all reduced functionals on A. Furthermore, this paper characterizes (A, Δ) as an algebraic quantum group with a standard *-operation and a special element z ε A such that (1 ⊗ a)Δ(z) = Δ(z)(a ⊗ 1) (∀a ε A).
KW - Cointegral
KW - Discrete quantum group
KW - Reduced functional
UR - http://www.scopus.com/inward/record.url?scp=84881295765&partnerID=8YFLogxK
U2 - 10.5269/bspm.v23i1-2.7455
DO - 10.5269/bspm.v23i1-2.7455
M3 - Article
AN - SCOPUS:84881295765
SN - 0037-8712
VL - 23
SP - 41
EP - 50
JO - Boletim da Sociedade Paranaense de Matematica
JF - Boletim da Sociedade Paranaense de Matematica
IS - 1-2
ER -