A Bifunctional Imidazolyl Iodide Mediator of Electrolyte Boosts Cathode Kinetics and Anode Stability Towards Low Overpotential and Long-Life Li-O2 Batteries

Jing Liu, Yuejiao Li, Yajun Ding, Lisha Wu, Jieqiong Qin, Tongle Chen, Caixia Meng, Feng Zhou, Xiangkun Ma*, Zhong Shuai Wu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

Plum Print visual indicator of research metrics
  • Captures
    • Readers: 1
  • Mentions
    • News Mentions: 13
see details

摘要

The addition of a redox mediator as soluble catalyst into electrolyte can effectively overcome the bottlenecks of poor energy efficiency and limited cyclability for Li-O2 batteries caused by passivation of insulating discharge products and unfavorable byproducts. Herein we report a novel soluble catalyst of bifunctional imidazolyl iodide salt additive, 1,3-dimethylimidazolium iodide (DMII), to successfully construct highly efficient and durable Li-O2 batteries. The anion I can effectively promote the charge transport of Li2O2 and accelerate the redox kinetics of oxygen reduction/oxygen evolution reactions on the cathode side, thereby significantly decreasing the charge/discharge overpotential. Simultaneously, the cation DMI+ forms an ultrathin stably solid-electrolyte interphase film on Li metal, greatly inhibiting the shuttle effect of I and improving the stability of anode. Using this DMII additive, our Li-O2 batteries achieve an extremely low voltage of 0.52 V and ultra-long cycling stability over 960 h. Notably, up to 95.8 % of the Li2O2 yield further proves the reversible generation/decomposition of Li2O2 without the occurrence of side reactions. Both experimental and theoretical results disclose that DMII enables Li+ easily solvated, testifying the dominance of the solution-induced reaction mechanism. This work provides the possibility to design the soluble catalysts towards high-performance Li-O2 batteries.

源语言英语
文章编号e202421107
期刊Angewandte Chemie - International Edition
64
10
DOI
出版状态已出版 - 3 3月 2025
已对外发布

指纹

探究 'A Bifunctional Imidazolyl Iodide Mediator of Electrolyte Boosts Cathode Kinetics and Anode Stability Towards Low Overpotential and Long-Life Li-O2 Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此

Liu, J., Li, Y., Ding, Y., Wu, L., Qin, J., Chen, T., Meng, C., Zhou, F., Ma, X., & Wu, Z. S. (2025). A Bifunctional Imidazolyl Iodide Mediator of Electrolyte Boosts Cathode Kinetics and Anode Stability Towards Low Overpotential and Long-Life Li-O2 Batteries. Angewandte Chemie - International Edition, 64(10), 文章 e202421107. https://doi.org/10.1002/anie.202421107