3D Human Motion Capture Based on Neural Network and Triangular Gaussian Point Cloud

Qing You, Wenjie Chen, Ye Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In this paper, an optical unmarked motion capture method based on convolutional neural network and triangular gaussian point cloud is proposed to achieve accurate 3D human pose estimation. Firstly, the Direct Linear Transformation(DLT) method is used to calibrate the actual multi camera system and obtain the internal and external parameters of all cameras. Then the depth neural network Cascaded Pyramid Network(CPN) is used to extract the 2D human key points in the images collected by each camera in the system. Next the triangle positioning and the least square method are used to preliminarily obtain the 3D human key point coordinates, and then the 3D key points of human body are optimized by gauss point cloud method to get the accurate 3D results of human body.

源语言英语
主期刊名Proceedings of the 39th Chinese Control Conference, CCC 2020
编辑Jun Fu, Jian Sun
出版商IEEE Computer Society
7481-7486
页数6
ISBN(电子版)9789881563903
DOI
出版状态已出版 - 7月 2020
活动39th Chinese Control Conference, CCC 2020 - Shenyang, 中国
期限: 27 7月 202029 7月 2020

出版系列

姓名Chinese Control Conference, CCC
2020-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议39th Chinese Control Conference, CCC 2020
国家/地区中国
Shenyang
时期27/07/2029/07/20

指纹

探究 '3D Human Motion Capture Based on Neural Network and Triangular Gaussian Point Cloud' 的科研主题。它们共同构成独一无二的指纹。

引用此