摘要
Greatly improving the sensitivity and detection range of lateral flow immunoassays (LFAs) by at least 100 times without using additional instruments remains challenging. Herein, we develop a three-dimensional (3D) film-like nanozyme (GO-Pt30-AuPt5) by ordered assembly of one layer of 30 nm Pt nanoparticles (NPs) and one layer of small Au@Pt satellites (5 nm) onto a two-dimensional (2D) graphene oxide (GO) nanofilm, in which GO greatly increased the interface area and stability of the nanozyme whereas Pt and Au@Pt NPs synergistically enhanced colorimetric/catalytic activities. The grafting of outer Au@Pt satellites converted the 2D nanofilm into a 3D flexible nanozyme with numerous catalytic sites for enzymatic deposition signal amplification and binding sites for target capture. The introduction of GO-Pt30-AuPt5 into multiplex LFA achieved the ultrasensitive and simultaneous detection of two important respiratory viruses with sensitivity of 1 pg/mL level, which was about 100 times higher than that without signal enrichment and at least 20 and 1900 times higher than those of traditional enzyme-linked immunosorbent assay and AuNP-based LFA, respectively. The clinical utility of the proposed assay was validated through the diagnosis of 49 real clinical respiratory tract specimens. Our proposed LFA shows great potential for the ultrasensitive screening of pathogens in the field.
源语言 | 英语 |
---|---|
期刊 | ACS Nano |
DOI | |
出版状态 | 已接受/待刊 - 2024 |
已对外发布 | 是 |