摘要
The shock wave overpressure field was measured through air-blast explosion experiment and calculated by using Autodyn to obtain the energy release law of the aluminized thermobaric explosive (TBX) and the influence of aluminum (Al) powder particle size. The overpressure field of TNT under air-blast loading was measured. The energy level of TBXs was evaluated based on TNT, and the after-burn effect of Al and its contribution to detonation heat were analyzed. The results show that the detonation heats of HMX and AP are due to the overpressure at 3 m. The energy release rate of aluminized TBX decreases due to the decalescence of Al, and increases after Al participating in the reaction. The after-burn effect of Al results in the high energy release rate in far-field, and the overpressure at 13 m approaches to 1.93 TNT equivalent. The two major influences of Al particle size on TBX mainly show in Al2O3 impairing the whole energy of TBX and the contribution of fine Al powder to the far-field overpressure of TBX being relatively lower. The results simulated by Autodyn was adjusted according to the measured data of 5 kg TBX, and the overpressure of 1 000 kg TBX was calculated using the adjusted constraint. The results show that the effective radius of damage of TBX approaches to 72 m, and is increased by about 50% compared with that of TNT.
投稿的翻译标题 | Influence of Aluminum Powder on Energy Release of HMX-based Air-blast Thermobaric Explosives |
---|---|
源语言 | 繁体中文 |
页(从-至) | 1190-1197 |
页数 | 8 |
期刊 | Binggong Xuebao/Acta Armamentarii |
卷 | 40 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 1 6月 2019 |
关键词
- Activated aluminum
- Air-blast thermobaric explosive
- Energy release law
- Overpressure field
- Radius of damage