机场跑道内爆炸毁伤效应及工程化函数模型

Rong Hu, Chunlan Jiang*, Guangzhao Lu, Zaicheng Wang, Liang Mao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

To systematically investigate the damage effects of airfield runways subjected to charge implosion and construct an engineering function model, experiments and numerical simulations are conducted using dimension analytics to study the influence of charge quality and buried depth levels on damage modes and damage parameters of airfield runways. Results indicate that the effective damage radius (Red) initially increases and then decreases with an increase in buried depth of charge at a constant charge quantity. Conversely, damage parameters increase with an increasing charge quantity when the buried depth is constant, and an optimal matching of explosion energy and buried depth can achieve the ideal damage. Additionally, based on the analysis of the mechanism of implosion in the runways, an evaluation method which combines damage mode and damage parameters to effectively characterize the damage of implosion in airfield runways is proposed. Based on the crater pattern and cracks obtained from experiments and numerical simulations, there are three damage modes of the runways: open crater, heave crater, and camouflet. The crater radius Rc, effective damage radius Red, maximum internal cavity radius Ric, and actual crater depth H are used as characteristic parameters to quantitatively describe the damage within the runways. An engineering model to predict the damage mode and damage parameters of implosion on airfield runways is also constructed based on a large number of simulations and experimental data, achieving rapid prediction of airfield runway implosion damage effects.

投稿的翻译标题Damage Effects and Engineering Computational Model of Internal Explosion of Airfield Runway
源语言繁体中文
页(从-至)929-939
页数11
期刊Binggong Xuebao/Acta Armamentarii
44
4
DOI
出版状态已出版 - 4月 2023

关键词

  • damage effect
  • damage mode
  • engineering computational model
  • internal explosion of airfield runway

指纹

探究 '机场跑道内爆炸毁伤效应及工程化函数模型' 的科研主题。它们共同构成独一无二的指纹。

引用此