TY - JOUR
T1 - 昆虫雷达散射截面积特性分析
AU - Hu, Cheng
AU - Fang, Linlin
AU - Wang, Rui
AU - Zhou, Chao
AU - Li, Weidong
AU - Zhang, Fan
AU - Lang, Tianjiao
AU - Long, Teng
N1 - Publisher Copyright:
© 2020, Science Press. All right reserved.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Insect radar is the most effective tool for insect migration observation. In order to realize target recognition of insect radar, it is important to study the RCS characteristics of insects. This paper will analyze the static and dynamic Radar Cross Section (RCS) characteristics of insects. Firstly, based on the measured X-band fully-polarimetric RCS data, the static RCS characteristics of insects are analyzed, including the variations of horizontal and vertical polarization RCS with body weight respectively, and the variation of insect polarization pattern with body weight. Secondly, the dielectrics and geometric models currently used to study the RCS characteristics of insects are summarized by electromagnetic simulation. Twelve dielectric models consisting of four dielectrics (including water, spinal cord, dry skin, and chitin and hemolymph mixture) and three geometric models (including equivalent size prolate spheroid, equivalent mass prolate spheroid and triaxial prolate spheroid) are compared, and it be found that the RCS characteristics of equivalent mass prolate spheroid are closest to that of the real insects. Then, the fluctuation characteristics of insect dynamic RCS are analyzed based on the insect echo data measured in field by a Ku-band high-resolution insect radar. The measured insect dynamic RCS fluctuation data are fitted with four classical RCS fluctuation distribution models (χ2, Log-normal, Weibull and Gamma distribution), respectively. It can be seen from the least square error of fitting and goodness of fit test that Gamma distribution gives the best description of the statistical characteristics of insect RCS fluctuations. Finally, the application of insect RCS characteristics to insect orientation, mass and body length measurements for insect radars is summarized.
AB - Insect radar is the most effective tool for insect migration observation. In order to realize target recognition of insect radar, it is important to study the RCS characteristics of insects. This paper will analyze the static and dynamic Radar Cross Section (RCS) characteristics of insects. Firstly, based on the measured X-band fully-polarimetric RCS data, the static RCS characteristics of insects are analyzed, including the variations of horizontal and vertical polarization RCS with body weight respectively, and the variation of insect polarization pattern with body weight. Secondly, the dielectrics and geometric models currently used to study the RCS characteristics of insects are summarized by electromagnetic simulation. Twelve dielectric models consisting of four dielectrics (including water, spinal cord, dry skin, and chitin and hemolymph mixture) and three geometric models (including equivalent size prolate spheroid, equivalent mass prolate spheroid and triaxial prolate spheroid) are compared, and it be found that the RCS characteristics of equivalent mass prolate spheroid are closest to that of the real insects. Then, the fluctuation characteristics of insect dynamic RCS are analyzed based on the insect echo data measured in field by a Ku-band high-resolution insect radar. The measured insect dynamic RCS fluctuation data are fitted with four classical RCS fluctuation distribution models (χ2, Log-normal, Weibull and Gamma distribution), respectively. It can be seen from the least square error of fitting and goodness of fit test that Gamma distribution gives the best description of the statistical characteristics of insect RCS fluctuations. Finally, the application of insect RCS characteristics to insect orientation, mass and body length measurements for insect radars is summarized.
KW - Electromagnetic simulation
KW - Insect Radar Cross Section (RCS) characteristics
KW - Insect radar
KW - RCS fluctuations
UR - http://www.scopus.com/inward/record.url?scp=85081651291&partnerID=8YFLogxK
U2 - 10.11999/JEIT190611
DO - 10.11999/JEIT190611
M3 - 文章
AN - SCOPUS:85081651291
SN - 1009-5896
VL - 42
SP - 140
EP - 153
JO - Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology
JF - Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology
IS - 1
ER -