基 于 多 变 量 形 态 学 特 征 的 健 康 老 年 人 认 知 发 展 预 测 算 法

Lingyu Zhang, Yalin Wang, Ziyang Zhao, Wenjing Huang, Weihao Zheng, Zhijun Yao, Bin Hu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Because conventional morphological indicators such as volume and surface area are too general for the subcortical nuclei,it is difficult to detect the subtle changes in the surface morphology using traditional morphological feature acquisition methods. To solve this problem,we propose a fine feature extraction algorithm for subcortical nuclei and apply it to the cognitive state prediction task of the elderly. Using surface conformal parameterization, surface conformal representation, and the surface fluid registration based on mutual information,15 000×2 morphological features are extracted from both the bilateral hippocampus and amygdala of 46 subjects. Using the dimensionality reduction process,including patch selection,sparse coding and dictionary learning,and max-pooling,we avoid the dimensionality curse while fully preserving the texture information of nuclei. Finally,taking tree as the weak learner,we integrate the final strong classifier using the GentleBoost algorithm for cognitive prediction. The results show that the prediction accuracy of 85% could be achieved only by the novel features of the hippocampus and amygdala,providing a new way perspective for fine feature mining of subcortical structures.

投稿的翻译标题Cognitive Development Prediction Algorithm for Healthy Elderly Based on Multi⁃variate Morphological Features
源语言繁体中文
页(从-至)837-848
页数12
期刊Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing
38
4
DOI
出版状态已出版 - 7月 2023

关键词

  • amygdala
  • cognitive state prediction
  • fine feature extraction
  • hippocampus
  • multi-varite morphological
  • subcortical nuclei

指纹

探究 '基 于 多 变 量 形 态 学 特 征 的 健 康 老 年 人 认 知 发 展 预 测 算 法' 的科研主题。它们共同构成独一无二的指纹。

引用此