TY - JOUR
T1 - 基于 BP 神经网络的爆炸用激波管峰值压力预测方法
AU - Chen, Ziwei
AU - Wang, Zhongqi
AU - Zeng, Linghui
N1 - Publisher Copyright:
© 2024 Explosion and Shock Waves. All rights reserved.
PY - 2024/5
Y1 - 2024/5
N2 - In response to the problems of the lack of corresponding empirical formulas and the poor timeliness of simulation for the explosive shock tube, and to quickly obtain the peak pressure of the shock tube used in explosions, a four-layer back propagation (BP) neural network was established to predict the peak pressure in the experimental section of the shock tube. After verifying the grid independence, numerical simulation was used to calculate the peak pressure of the test section of the shock tube, and the simulation data were compared with the experimental data of the shock tube explosion, and the average relative error is 2.49%. After proving the accuracy of the numerical simulation values, the 195 sets of peak pressure obtained from the numerical simulation in the shock tube test section were used as the output layer, and the TNT dosage in the shock tube driving section, aspect ratio of the charge column, and explosion proportional distance were used as the input layer for BP neural network training. To speed up the neural network iterations and increase the prediction accuracy, Adam's algorithm was used as an optimization algorithm for neural network error gradient descent. The results show that the predicted results obtained through the trained neural network are basically consistent with the simulated values, and the average relative error between the predicted results and the numerical values is 3.26%. In contrast to the evaluation metrics obtained using multiple regression analysis (mean absolute error (MAE) of 480 and coefficient of determination (R2) of 0.58), the four-layer BP neural network obtains a MAE of 25.4 and an R2 of 0.99 for the validation set. The BP neural network model can reflect the mapping relationship between the peak pressure of the shock tube explosion and the influencing factors, and improve several times compared with the time required for numerical simulation, so it has the value of practical engineering applications.
AB - In response to the problems of the lack of corresponding empirical formulas and the poor timeliness of simulation for the explosive shock tube, and to quickly obtain the peak pressure of the shock tube used in explosions, a four-layer back propagation (BP) neural network was established to predict the peak pressure in the experimental section of the shock tube. After verifying the grid independence, numerical simulation was used to calculate the peak pressure of the test section of the shock tube, and the simulation data were compared with the experimental data of the shock tube explosion, and the average relative error is 2.49%. After proving the accuracy of the numerical simulation values, the 195 sets of peak pressure obtained from the numerical simulation in the shock tube test section were used as the output layer, and the TNT dosage in the shock tube driving section, aspect ratio of the charge column, and explosion proportional distance were used as the input layer for BP neural network training. To speed up the neural network iterations and increase the prediction accuracy, Adam's algorithm was used as an optimization algorithm for neural network error gradient descent. The results show that the predicted results obtained through the trained neural network are basically consistent with the simulated values, and the average relative error between the predicted results and the numerical values is 3.26%. In contrast to the evaluation metrics obtained using multiple regression analysis (mean absolute error (MAE) of 480 and coefficient of determination (R2) of 0.58), the four-layer BP neural network obtains a MAE of 25.4 and an R2 of 0.99 for the validation set. The BP neural network model can reflect the mapping relationship between the peak pressure of the shock tube explosion and the influencing factors, and improve several times compared with the time required for numerical simulation, so it has the value of practical engineering applications.
KW - adaptive moment estimation
KW - BP neural network
KW - peak pressure
KW - shock tube
UR - http://www.scopus.com/inward/record.url?scp=85195063713&partnerID=8YFLogxK
U2 - 10.11883/bzycj-2023-0187
DO - 10.11883/bzycj-2023-0187
M3 - 文章
AN - SCOPUS:85195063713
SN - 1001-1455
VL - 44
JO - Baozha Yu Chongji/Expolosion and Shock Waves
JF - Baozha Yu Chongji/Expolosion and Shock Waves
IS - 5
M1 - 054101-1
ER -