TY - JOUR
T1 - 四波段共光轴成像实验平台及其图像融合
AU - Liu, Zhihao
AU - Jin, Weiqi
AU - Li, Li
AU - Sha, Mozhou
AU - Guo, Qin
N1 - Publisher Copyright:
© 2022, Chinese Institute of Electronics. All right reserved.
PY - 2022/1/10
Y1 - 2022/1/10
N2 - To obtain and make full use of the multi-spectrum information of the scene, and to lay the foundation for the research of multi-band image algorithms, a four-band coaxial imaging experimental platform of visible light + near infrared, short wave infrared, mid-wave infrared and long-wave infrared was developed based on uncooled infrared focal plane array (IRFPA). Image processing cases based on the four-band imaging experimental platform were presented. FPGA was used in the preprocessing of each channel of image and the fusion of multi-band image. The image quality of each band was optimized by the preprocessing procedure, that included the blind point correction of the visible sensor and nonuniformity correction of the mid-wave and long-wave infrared sensors based on grad-filtering. Dual-band and four-band image fusion enhanced the color of the fusion image obtained by linear combination in the YUV color space by color transfer, thus resulting in a natural color fusion image as well as ensuring the operating efficiency of the algorithm. Dual-band infrared temperature measurement was performed using medium and long-wave infrared. The blackbody experiment shows that in the temperature range of 20-80 ℃, the accuracy of dual-band temperature measurement is significantly higher than that of single-band temperature measurement, the error of dual-band temperature measurement is less than 3.5%, and the single-point temperature fluctuation range is less than 0.7%. The outfield experiment results show that information fusion images can effectively enhance the human eye's understanding of scene information. The four-band imaging experimental platform can easily obtain the four-band information of the scene, and image fusion and dual-band temperature measurement can strengthen the understanding of scene information.
AB - To obtain and make full use of the multi-spectrum information of the scene, and to lay the foundation for the research of multi-band image algorithms, a four-band coaxial imaging experimental platform of visible light + near infrared, short wave infrared, mid-wave infrared and long-wave infrared was developed based on uncooled infrared focal plane array (IRFPA). Image processing cases based on the four-band imaging experimental platform were presented. FPGA was used in the preprocessing of each channel of image and the fusion of multi-band image. The image quality of each band was optimized by the preprocessing procedure, that included the blind point correction of the visible sensor and nonuniformity correction of the mid-wave and long-wave infrared sensors based on grad-filtering. Dual-band and four-band image fusion enhanced the color of the fusion image obtained by linear combination in the YUV color space by color transfer, thus resulting in a natural color fusion image as well as ensuring the operating efficiency of the algorithm. Dual-band infrared temperature measurement was performed using medium and long-wave infrared. The blackbody experiment shows that in the temperature range of 20-80 ℃, the accuracy of dual-band temperature measurement is significantly higher than that of single-band temperature measurement, the error of dual-band temperature measurement is less than 3.5%, and the single-point temperature fluctuation range is less than 0.7%. The outfield experiment results show that information fusion images can effectively enhance the human eye's understanding of scene information. The four-band imaging experimental platform can easily obtain the four-band information of the scene, and image fusion and dual-band temperature measurement can strengthen the understanding of scene information.
KW - Dual-band temperature measurement
KW - Image fusion
KW - Multi-band infrared imaging
KW - Photoelectric imaging
KW - Un-cooled infrared focal plane array(IRFPA)
UR - http://www.scopus.com/inward/record.url?scp=85123916120&partnerID=8YFLogxK
U2 - 10.37188/OPE.20223001.0001
DO - 10.37188/OPE.20223001.0001
M3 - 文章
AN - SCOPUS:85123916120
SN - 1004-924X
VL - 30
SP - 1
EP - 11
JO - Guangxue Jingmi Gongcheng/Optics and Precision Engineering
JF - Guangxue Jingmi Gongcheng/Optics and Precision Engineering
IS - 1
ER -