具有动态弹性稀疏表示的鲁棒目标跟踪算法

Zi Hao Ding, Chun Lei Song*, Xu Qian Ren, Jian Hua Xu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

In visual tracking, the target's environment has a significant influence on the tracking result. To solve this problem, we propose a sparse representation model based on the elastic net and design an anti-jamming visual tracking algorithm under the particle filter framework. To overcome the influence of light change and other disturbances on the tracking result, we develop a method to dynamically update sparse representation model parameters according to the environment change. Besides, using the anisotropic kernel function to calculate the probability that each candidate region is the tracking target's location, the proposed algorithm improves the tracking algorithm's accuracy. Furthermore, we improve the dictionary template updating method to ensure the accuracy and timeliness of template updating and ensure the tracking quality. Experimental results show that compared with other tracking algorithms, the dynamic elastic network tracking algorithm proposed has a better tracking effect under disturbance, such as illumination. Moreover, the algorithm can virtually guarantee tracking accuracy under occlusion and fast motion.

投稿的翻译标题Dynamic elastic net sparse representation robust visual tracking
源语言繁体中文
页(从-至)2674-2682
页数9
期刊Kongzhi yu Juece/Control and Decision
36
11
DOI
出版状态已出版 - 11月 2021

关键词

  • Dictionary update
  • Dynamic elastic net
  • Kernal functioin
  • Particle filter
  • Sparse representation
  • Visual tracking

指纹

探究 '具有动态弹性稀疏表示的鲁棒目标跟踪算法' 的科研主题。它们共同构成独一无二的指纹。

引用此