TY - JOUR
T1 - 人体肌骨的多柔体系统动力学研究进展
AU - Guo, Jianqiao
AU - Wang, Yanbing
AU - Tian, Qiang
AU - Ren, Gexue
AU - Hu, Haiyan
N1 - Publisher Copyright:
© 2022 Chinese Academy of Mechanics. All rights reserved.
PY - 2022/6
Y1 - 2022/6
N2 - The human system consists of bones, skeletal muscles, and joints, so the system model in mechanics is a typical flexible multi-body system. The study on musculoskeletal multi-body dynamics mainly aims to determine muscle forces and joint moments together with the effect of their actions during human locomotion. Thus, it is a multi-disciplinary subject between dynamics and biomechanics. Musculoskeletal multi-body models have seen successful applications in many fields, such as clinical research, sports engineering, military training, and ergonomics. The simulation results of these models can provide important data for improving physical performances, reducing joint loading and energy consumption, preventing sports injuries, and accelerating rehabilitation processes. In turn, the achievement of these human-related techniques provides the study of musculoskeletal dynamics with numerous new challenges. This review surveys the literature on the multi-body dynamics modeling of human musculoskeletal systems. Its contents include the functional anatomy and biomechanical models of the skeletal muscle, neuromuscular control strategies, and the computational frameworks for musculoskeletal modeling. The paper also reviews several typical applications of musculoskeletal modeling in the fields of gait analysis, anti-G straining maneuver of pilots, and mandibular surgical planning. Compared with classical mechanical systems in mechanical engineering, the human musculoskeletal system has the characteristics of active force and redundancy control. However, existing muscle models cannot simultaneously consider the anatomical structures and three-dimensional geometries of the muscles together with their biochemical force-generating mechanism. Meanwhile, most studies have utilized the static optimization assumption to deal with muscle recruitments, neglecting the equilibrium between musculotendon forces and contraction dynamics. So far, It is still a challenging task to build subject-specific musculoskeletal models based on non-invasive in vivo measurements. Future studies on musculoskeletal multi-body dynamics will achieve a more precise, intelligent, and subject-specific modeling framework, which leads to a hot research topic involving interdisciplinary collaborations of dynamics and biomechanics.
AB - The human system consists of bones, skeletal muscles, and joints, so the system model in mechanics is a typical flexible multi-body system. The study on musculoskeletal multi-body dynamics mainly aims to determine muscle forces and joint moments together with the effect of their actions during human locomotion. Thus, it is a multi-disciplinary subject between dynamics and biomechanics. Musculoskeletal multi-body models have seen successful applications in many fields, such as clinical research, sports engineering, military training, and ergonomics. The simulation results of these models can provide important data for improving physical performances, reducing joint loading and energy consumption, preventing sports injuries, and accelerating rehabilitation processes. In turn, the achievement of these human-related techniques provides the study of musculoskeletal dynamics with numerous new challenges. This review surveys the literature on the multi-body dynamics modeling of human musculoskeletal systems. Its contents include the functional anatomy and biomechanical models of the skeletal muscle, neuromuscular control strategies, and the computational frameworks for musculoskeletal modeling. The paper also reviews several typical applications of musculoskeletal modeling in the fields of gait analysis, anti-G straining maneuver of pilots, and mandibular surgical planning. Compared with classical mechanical systems in mechanical engineering, the human musculoskeletal system has the characteristics of active force and redundancy control. However, existing muscle models cannot simultaneously consider the anatomical structures and three-dimensional geometries of the muscles together with their biochemical force-generating mechanism. Meanwhile, most studies have utilized the static optimization assumption to deal with muscle recruitments, neglecting the equilibrium between musculotendon forces and contraction dynamics. So far, It is still a challenging task to build subject-specific musculoskeletal models based on non-invasive in vivo measurements. Future studies on musculoskeletal multi-body dynamics will achieve a more precise, intelligent, and subject-specific modeling framework, which leads to a hot research topic involving interdisciplinary collaborations of dynamics and biomechanics.
KW - flexible multibody dynamics
KW - inverse dynamics
KW - musculoskeletal system
KW - skeletal muscle
KW - sport biomechanics
UR - http://www.scopus.com/inward/record.url?scp=85137657246&partnerID=8YFLogxK
U2 - 10.6052/1000-0992-21-056
DO - 10.6052/1000-0992-21-056
M3 - 文章
AN - SCOPUS:85137657246
SN - 1000-0992
VL - 52
SP - 253
EP - 310
JO - Advances in Mechanics
JF - Advances in Mechanics
IS - 2
ER -