刘 琼昕

根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
20032024

每年的科研成果

个人简介

个人简介

姓名:刘琼昕
所在学科:计算机应用技术
职称:
联系电话:13718727670,68913292
E-mail:summer@bit.edu.cn
通信地址:北京市海淀区中关村南大街5号中心教学楼1045个人信息
刘琼昕,女,博士,副教授,硕士生导师。1996 年 7 月起在北京理工大学计算机学院工作至今。研究方向包括:人工智能、机器学习、知识图谱、任务规划相关技术,主持和参与多项科技部科技支撑项目、863 重大科研项目、自然科学基金、部委科技预研项目等,取得多项创新性成果。主讲本科生专业必修课《离散数学》、《机器学习》。

研究领域和方向

科研方向
1.知识图谱
使用深度学习等方法研究知识推理、关系抽取等知识图谱构建的关键技术,研究知识图谱在多个领域的应用,包括搜索、推荐、问答等。
2.基于AI的任务规划及相关技术
针对复杂环境约束、任务约束和目标约束,应用群体智能方法(遗传算法、蚁群算法、粒子群算法等),研究多目标优化问题中协同任务分配、高维多目标规划、资源受限任务调度等关键技术。

教育背景

个人信息
刘琼昕,女,博士,副教授,硕士生导师。1996 年 7 月起在北京理工大学计算机学院工作至今。研究方向包括:人工智能、机器学习、知识图谱、任务规划相关技术,主持和参与多项科技部科技支撑项目、863 重大科研项目、自然科学基金、部委科技预研项目等,取得多项创新性成果。主讲本科生专业必修课《离散数学》、《机器学习》。

工作履历

个人信息
刘琼昕,女,博士,副教授,硕士生导师。1996 年 7 月起在北京理工大学计算机学院工作至今。研究方向包括:人工智能、机器学习、知识图谱、任务规划相关技术,主持和参与多项科技部科技支撑项目、863 重大科研项目、自然科学基金、部委科技预研项目等,取得多项创新性成果。主讲本科生专业必修课《离散数学》、《机器学习》。

研究成果


代表性学术成果
2017——(本人一作或者学生一作)
[1] Curriculum learning for distant supervision relation extraction[J]. Journal of Web Semantics, 2020, 61-62(Feb):100559. DOI:10.1016/j.websem.2020.100559.
[2] Distant Supervised Relation Extraction with Position Feature Attention and Selective Bag Attention. Neurocomputing(已录用)
[3] 基于全局覆盖机制与表示学习的生成式知识问答技术[J/OL].自动化学报:1-14[2021-05-08].https://doi.org/10.16383/j.aas.c190785.
[4] Panoramic video stitching of dual cameras based on spatio-temporal seam optimization[J]. Multimedia Tools and Applications, 2020, 79(5):3107-3124.
[5] 一种融合实体关联性约束的表示学习方法[J].北京理工大学学报,2020,40(01):90-97.
[6] 基于知识增强的深度新闻推荐网络[J].北京理工大学学报,2021,41(03):286-294.
[7] 复杂网络下基于路径选择的表示学习方法[J].北京理工大学学报,2020,40(03):282-289.
[8] An Advanced Load Balancing Strategy for Cloud Environment[C]// International Conference on Parallel & Distributed Computing. IEEE, 2017.
[9] 一种基于实体关联性约束的表示学习方法[P]. 北京市:CN108647258B,2020-12-22.
[10] 一种基于知识表示学习的协同矩阵分解方法[P]. 北京市:CN108804565B,2021-04-13.
所获奖励
[1] 分布式数据存储访问与安全技术. 2011年获部委科技进步三等奖
[2] 辅助决策技术. 2001年获部委科技进步三等奖

指纹图谱

深入其中 Qiongxin Liu 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。
  • 1 相似简介

最近五年的合作关系和顶尖研究领域

最近的国家/地区级外部合作关系。点击圆点,以了解详细信息或