[1] K. Coulembier and M. Ehrig: The periplectic Brauer algebra II: Decomposition multiplicities. J. Comb. Algebra, 2(1), 19-46, 2018
[2] M. Ehrig. MV-polytopes via affine buildings. Duke Math. J., 155(3), 433- 482, 2010.
[3] M. Ehrig and C. Stroppel. 2-row Springer fibres and Khovanov diagram algebras for type D. Canad. J. Math., 68(6), 1285-1333, 2016.
[4] M. Ehrig and C. Stroppel. Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians. Selecta Math. (N.S.), 22(3), 1455-1536, 2016.
[5] M. Ehrig and C. Stroppel. Koszul gradings on Brauer algebras. Int. Math. Res. Not. IMRN, (13), 3970-4011, 2016.
[6] M. Ehrig and C. Stroppel. Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra. Math. Z., 284(1-2), 595-613, 2016.
[7] M. Ehrig and C. Stroppel. On the category of finite-dimensional representations of OSp(r|2n): Part I. In Representation theory|current trends and perspectives, EMS Ser. Congr. Rep., pages 109-170. Eur. Math. Soc., Zurich, 2017.
[8] M. Ehrig and C. Stroppel. Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Adv. Math., 331, 58-142, 2018.
[9] M. Ehrig, C. Stroppel, and D. Tubbenhauer. The Blanchet-Khovanov algebras. In Categorification and higher representation theory, volume 683 of Contemp. Math., 183-226, 2017.
[10] M. Ehrig and D. Tubbenhauer. Algebraic properties of zig-zag algebras. Online published in Communications in Algebra, 2019.
[11] M. Ehrig and D. Tubbenhauer. Relative cellular algebras. online published in Trans. Groups, 2019.
[12] M. Ehrig, D. Tubbenhauer, and P. Wedrich. Functoriality of colored link homologies.
Proceedings of the LMS, 117(5), 996-1040, 2018.
[13] M. Ehrig, D. Tubbenhauer, and A. Wilbert. Singular TQFTs, foams and type D arc algebras. Documenta Math., 24, 1585-1655, 2019.
2015 年,联合国成员国同意 17 项可持续发展目标 (SDG),以消除贫困、保护地球并确保全人类的繁荣。此人的工作有助于实现下列可持续发展目标: