TY - JOUR
T1 - Wire-in-tube ZnO@carbon by molecular layer deposition
T2 - Accurately tunable electromagnetic parameters and remarkable microwave absorption
AU - Yan, Lili
AU - Zhang, Min
AU - Zhao, Shichao
AU - Sun, Tijian
AU - Zhang, Bin
AU - Cao, Maosheng
AU - Qin, Yong
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/15
Y1 - 2020/2/15
N2 - Yolk–shell and one-dimensional structures are promising microwave absorption structures due to the microwave multi-reflection and scattering sites of yolk–shell structure, and the conductive network that is easily formed by one-dimensional structure. The wire-in-tube structure may be a more effective microwave absorption structure because it combines the advantages of one-dimensional and yolk–shell structures. However, conventional methods are difficult to realize such a structure because of the weak controllability of the structure, and it is impossible to tune the absorption band or optimize the absorption performance by precisely tailoring the structure. Molecular layer deposition (MLD), with excellent structure controllability, is an effective strategy to overcome this problem. In this work, a novel wire-in-tube ZnO@carbon nanostructure was realized by polyimide MLD–calcination strategy. The ZnO cores and carbon shells form voids between them by a redox process during calcination, conducive to microwave multi-refection and scattering. More importantaly, by tuning the number of deposition cycles, the carbon shell thickness can be adjusted at the atomic scale so as to modulate the absorption bands effectively. Maximum absorption of −50.05 dB and a bandwidth of 5.68 GHz are simultaneously achieved at a matching thickness of 2.0 mm. The polyimide MLD–calcination strategy not only provides a novel wire-in-tube structure with remarkable microwave absorption performance, but diversifies carbonaceous material fabrication methods, extending the applications to supercapacitors, sensing, catalysis, and the biomedical fields.
AB - Yolk–shell and one-dimensional structures are promising microwave absorption structures due to the microwave multi-reflection and scattering sites of yolk–shell structure, and the conductive network that is easily formed by one-dimensional structure. The wire-in-tube structure may be a more effective microwave absorption structure because it combines the advantages of one-dimensional and yolk–shell structures. However, conventional methods are difficult to realize such a structure because of the weak controllability of the structure, and it is impossible to tune the absorption band or optimize the absorption performance by precisely tailoring the structure. Molecular layer deposition (MLD), with excellent structure controllability, is an effective strategy to overcome this problem. In this work, a novel wire-in-tube ZnO@carbon nanostructure was realized by polyimide MLD–calcination strategy. The ZnO cores and carbon shells form voids between them by a redox process during calcination, conducive to microwave multi-refection and scattering. More importantaly, by tuning the number of deposition cycles, the carbon shell thickness can be adjusted at the atomic scale so as to modulate the absorption bands effectively. Maximum absorption of −50.05 dB and a bandwidth of 5.68 GHz are simultaneously achieved at a matching thickness of 2.0 mm. The polyimide MLD–calcination strategy not only provides a novel wire-in-tube structure with remarkable microwave absorption performance, but diversifies carbonaceous material fabrication methods, extending the applications to supercapacitors, sensing, catalysis, and the biomedical fields.
KW - Carbonaceous material
KW - Microwave absorption
KW - Molecular layer deposition
KW - Wire-in-tube structure
KW - ZnO
UR - http://www.scopus.com/inward/record.url?scp=85072838185&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.122860
DO - 10.1016/j.cej.2019.122860
M3 - Article
AN - SCOPUS:85072838185
SN - 1385-8947
VL - 382
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 122860
ER -