TY - JOUR
T1 - Winnie
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
AU - Gao, Kaizhi
AU - Wang, Tianyu
AU - Ma, Zhongjing
AU - Zou, Suli
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Pre-trained encoder-decoder models are widely applied in Task-Oriented Dialog (TOD) systems on the session level, mainly focusing on modeling the dialog semantic information. Dialogs imply structural information indicating the interaction among user utterances, belief states, database search results, system acts and responses, which is also crucial for TOD systems. In addition, for the system acts, additional pre-training and datasets are considered to improve their accuracies, undoubtedly introducing a burden. Therefore, a novel end-to-end TOD system named Winnie is proposed in this paper to improve the TOD performance. First, to make full use of the intrinsic structural information, supervised contrastive learning is adopted to narrow the gap in the representation space between text representations of the same category and enlarge the overall continuous representation margin between text representations of different categories in dialog context. Then, a system act classification task is introduced for policy optimization during fine-tuning. Empirical results show that Winnie substantially improves the performance of the TOD system. By introducing the supervised contrastive and system act classification losses, Winnie achieves state-of-the-art results on benchmark datasets, including MultiWOZ2.2, In-Car, and Camrest676. Their end-to-end combined scores are improved by 3.2, 1.9, and 1.1 points, respectively.
AB - Pre-trained encoder-decoder models are widely applied in Task-Oriented Dialog (TOD) systems on the session level, mainly focusing on modeling the dialog semantic information. Dialogs imply structural information indicating the interaction among user utterances, belief states, database search results, system acts and responses, which is also crucial for TOD systems. In addition, for the system acts, additional pre-training and datasets are considered to improve their accuracies, undoubtedly introducing a burden. Therefore, a novel end-to-end TOD system named Winnie is proposed in this paper to improve the TOD performance. First, to make full use of the intrinsic structural information, supervised contrastive learning is adopted to narrow the gap in the representation space between text representations of the same category and enlarge the overall continuous representation margin between text representations of different categories in dialog context. Then, a system act classification task is introduced for policy optimization during fine-tuning. Empirical results show that Winnie substantially improves the performance of the TOD system. By introducing the supervised contrastive and system act classification losses, Winnie achieves state-of-the-art results on benchmark datasets, including MultiWOZ2.2, In-Car, and Camrest676. Their end-to-end combined scores are improved by 3.2, 1.9, and 1.1 points, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85189622548&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i16.29758
DO - 10.1609/aaai.v38i16.29758
M3 - Conference article
AN - SCOPUS:85189622548
SN - 2159-5399
VL - 38
SP - 18021
EP - 18029
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 16
Y2 - 20 February 2024 through 27 February 2024
ER -