TY - GEN
T1 - Web-supervised network with softly update-drop training for fine-grained visual classification
AU - Zhang, Chuanyi
AU - Yao, Yazhou
AU - Liu, Huafeng
AU - Xie, Guo Sen
AU - Shu, Xiangbo
AU - Zhou, Tianfei
AU - Zhang, Zheng
AU - Shen, Fumin
AU - Tang, Zhenmin
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Labeling objects at the subordinate level typically requires expert knowledge, which is not always available from a random annotator. Accordingly, learning directly from web images for fine-grained visual classification (FGVC) has attracted broad attention. However, the existence of noise in web images is a huge obstacle for training robust deep neural networks. In this paper, we propose a novel approach to remove irrelevant samples from the real-world web images during training, and only utilize useful images for updating the networks. Thus, our network can alleviate the harmful effects caused by irrelevant noisy web images to achieve better performance. Extensive experiments on three commonly used fine-grained datasets demonstrate that our approach is much superior to state-of-the-art webly supervised methods. The data and source code of this work have been made anonymously available at: https://github.com/z337-408/WSNFGVC.
AB - Labeling objects at the subordinate level typically requires expert knowledge, which is not always available from a random annotator. Accordingly, learning directly from web images for fine-grained visual classification (FGVC) has attracted broad attention. However, the existence of noise in web images is a huge obstacle for training robust deep neural networks. In this paper, we propose a novel approach to remove irrelevant samples from the real-world web images during training, and only utilize useful images for updating the networks. Thus, our network can alleviate the harmful effects caused by irrelevant noisy web images to achieve better performance. Extensive experiments on three commonly used fine-grained datasets demonstrate that our approach is much superior to state-of-the-art webly supervised methods. The data and source code of this work have been made anonymously available at: https://github.com/z337-408/WSNFGVC.
UR - http://www.scopus.com/inward/record.url?scp=85106717794&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85106717794
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 12781
EP - 12788
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -