@inproceedings{04dda9b9da75474691708b2c5937029c,
title = "Weakly Supervised Action Recognition and Localization Using Web Images",
abstract = "This paper addresses the problem of joint recognition and localization of actions in videos. We develop a novel Transfer Latent Support Vector Machine (TLSVM) by using Web images and weakly annotated training videos. In order to alleviate the laborious and timeconsuming manual annotations of action locations, the model takes training videos which are only annotated with action labels as input. Due to the non-available ground-truth of action locations in videos, the locations are treated as latent variables in our method and are inferred during both training and testing phrases. For the purpose of improving the localization accuracy with some prior information of action locations, we collect a number ofWeb images which are annotated with both action labels and action locations to learn a discriminative model by enforcing the local similarities between videos and Web images. A structural transformation based on randomized clustering forest is used to map Web images to videos for handling the heterogeneous features of Web images and videos. Experiments on two publicly available action datasets demonstrate that the proposed model is effective for both action localization and action recognition.",
author = "Cuiwei Liu and Xinxiao Wu and Yunde Jia",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing Switzerland 2015.; 12th Asian Conference on Computer Vision, ACCV 2014 ; Conference date: 01-11-2014 Through 05-11-2014",
year = "2015",
doi = "10.1007/978-3-319-16814-2_42",
language = "English",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "642--657",
editor = "Daniel Cremers and Hideo Saito and Ian Reid and Ming-Hsuan Yang",
booktitle = "Computer Vision - ACCV 2014 - 12th Asian Conference on Computer Vision, Revised Selected Papers",
address = "Germany",
}