TY - JOUR
T1 - Viewpoint-Controllable Telepresence
T2 - A Robotic-Arm-Based Mixed-Reality Telecollaboration System
AU - Luo, Le
AU - Weng, Dongdong
AU - Hao, Jie
AU - Tu, Ziqi
AU - Jiang, Haiyan
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - In mixed-reality (MR) telecollaboration, the local environment is remotely presented to a remote user wearing a virtual reality (VR) head-mounted display (HMD) via a video capture device. However, remote users frequently face challenges in naturally and actively manipulating their viewpoints. In this paper, we propose a telepresence system with viewpoint control, which involves a robotic arm equipped with a stereo camera in the local environment. This system enables remote users to actively and flexibly observe the local environment by moving their heads to manipulate the robotic arm. Additionally, to solve the problem of the limited field of view of the stereo camera and limited movement range of the robotic arm, we propose a 3D reconstruction method combined with a stereo video field-of-view enhancement technique to guide remote users to move within the movement range of the robotic arm and provide them with a larger range of local environment perception. Finally, a mixed-reality telecollaboration prototype was built, and two user studies were conducted to evaluate the overall system. User study A evaluated the interaction efficiency, system usability, workload, copresence, and user satisfaction of our system from the remote user’s perspective, and the results showed that our system can effectively improve the interaction efficiency while achieving a better user experience than two traditional view-sharing techniques based on 360 video and based on the local user’s first-person view. User study B evaluated our MR telecollaboration system prototype from both the remote-user side and the local-user side as a whole, providing directions and suggestions for the subsequent design and improvement of our mixed-reality telecollaboration system.
AB - In mixed-reality (MR) telecollaboration, the local environment is remotely presented to a remote user wearing a virtual reality (VR) head-mounted display (HMD) via a video capture device. However, remote users frequently face challenges in naturally and actively manipulating their viewpoints. In this paper, we propose a telepresence system with viewpoint control, which involves a robotic arm equipped with a stereo camera in the local environment. This system enables remote users to actively and flexibly observe the local environment by moving their heads to manipulate the robotic arm. Additionally, to solve the problem of the limited field of view of the stereo camera and limited movement range of the robotic arm, we propose a 3D reconstruction method combined with a stereo video field-of-view enhancement technique to guide remote users to move within the movement range of the robotic arm and provide them with a larger range of local environment perception. Finally, a mixed-reality telecollaboration prototype was built, and two user studies were conducted to evaluate the overall system. User study A evaluated the interaction efficiency, system usability, workload, copresence, and user satisfaction of our system from the remote user’s perspective, and the results showed that our system can effectively improve the interaction efficiency while achieving a better user experience than two traditional view-sharing techniques based on 360 video and based on the local user’s first-person view. User study B evaluated our MR telecollaboration system prototype from both the remote-user side and the local-user side as a whole, providing directions and suggestions for the subsequent design and improvement of our mixed-reality telecollaboration system.
KW - human computer interaction
KW - mixed reality
KW - robotic arm
KW - telepresence
UR - http://www.scopus.com/inward/record.url?scp=85153680315&partnerID=8YFLogxK
U2 - 10.3390/s23084113
DO - 10.3390/s23084113
M3 - Article
C2 - 37112455
AN - SCOPUS:85153680315
SN - 1424-8220
VL - 23
JO - Sensors
JF - Sensors
IS - 8
M1 - 4113
ER -