Video Object Segmentation with Episodic Graph Memory Networks

Xiankai Lu, Wenguan Wang*, Martin Danelljan, Tianfei Zhou, Jianbing Shen, Luc Van Gool

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

161 Citations (Scopus)

Abstract

How to make a segmentation model efficiently adapt to a specific video as well as online target appearance variations is a fundamental issue in the field of video object segmentation. In this work, a graph memory network is developed to address the novel idea of “learning to update the segmentation model”. Specifically, we exploit an episodic memory network, organized as a fully connected graph, to store frames as nodes and capture cross-frame correlations by edges. Further, learnable controllers are embedded to ease memory reading and writing, as well as maintain a fixed memory scale. The structured, external memory design enables our model to comprehensively mine and quickly store new knowledge, even with limited visual information, and the differentiable memory controllers slowly learn an abstract method for storing useful representations in the memory and how to later use these representations for prediction, via gradient descent. In addition, the proposed graph memory network yields a neat yet principled framework, which can generalize well to both one-shot and zero-shot video object segmentation tasks. Extensive experiments on four challenging benchmark datasets verify that our graph memory network is able to facilitate the adaptation of the segmentation network for case-by-case video object segmentation.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages661-679
Number of pages19
ISBN (Print)9783030585792
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12348 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Episodic graph memory
  • Learn to update
  • Video segmentation

Fingerprint

Dive into the research topics of 'Video Object Segmentation with Episodic Graph Memory Networks'. Together they form a unique fingerprint.

Cite this