Abstract
In this work, we analyze the use of optoelectronic tweezers (OETs) to manipulate 45 μm diameter Sn62Pb36Ag2 solder beads with light-induced dielectrophoresis force and we demonstrate high positioning accuracy. It was found that the positional deviation of the solder beads increases with the increase of the trap size. To clarify the underlying mechanism, simulations based on the integration of the Maxwell stress tensor were used to study the force profiles of OET traps with different sizes. It was found that the solder beads felt a 0.1 nN static friction or stiction force due to electrical forces pulling them towards the surface and that this force is not dependent on the size of the trap. The stiction limits the positioning accuracy; however, we show that by choosing a trap that is just larger than the solder bead sub-micron positional accuracy can be achieved.
Original language | English |
---|---|
Article number | 221110 |
Journal | Applied Physics Letters |
Volume | 109 |
Issue number | 22 |
DOIs | |
Publication status | Published - 28 Nov 2016 |
Externally published | Yes |