Abstract
The band structure for a crystal generally consists of connected components in energy-momentum space, known as band complexes. Here, we explore a fundamental aspect regarding the maximal number of bands that can be accommodated in a single band complex. We show that, in principle, a band complex can have no finite upper bound for certain space groups. This means infinitely many bands can entangle together, forming a connected pattern stable against symmetry-preserving perturbations. This is demonstrated by our developed inductive construction procedure, through which a given band complex can always be grown into a larger one by gluing a basic building block to it. As a by-product, we demonstrate the existence of arbitrarily large accordion-type band structures containing NC=4n bands, with n∈N.
Original language | English |
---|---|
Article number | 235145 |
Journal | Physical Review B |
Volume | 107 |
Issue number | 23 |
DOIs | |
Publication status | Published - 15 Jun 2023 |