Unmanned Aerial Vehicle Base Station (UAV-BS) Deployment with Millimeter-Wave Beamforming

Zhenyu Xiao, Hang Dong, Lin Bai*, Dapeng Oliver Wu, Xiang Gen Xia

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

147 Citations (Scopus)

Abstract

Unmanned aerial vehicle (UAV) with flexible mobility and low cost has been a promising technology for wireless communication. Thus, it can be used for wireless data collection in Internet of Things (IoT). In this article, we consider millimeter-wave (mmWave) communication on a UAV platform, where the UAV base station (UAV-BS) serves multiple ground users, which generate big sensor data. Both the deployment of the UAV-BS and the beamforming design have essential impact on the throughput of the system. Thus, we formulate a problem to maximize the achievable sum rate of all the users, subject to a minimum rate constraint for each user, a position constraint of the UAV-BS, and a constant-modulus (CM) constraint for the beamforming vector. We solve the nonconvex problem with two steps. First, by introducing the approximate beam pattern, we solve the deployment and beam gain allocation subproblem. Then, we utilize the artificial bee colony (ABC) algorithm to solve the beamforming subproblem. For the global optimization problem, we find the near-optimal position of the UAV-BS and the beamforming vector to steer toward each user, subject to an analog beamforming structure. The simulation results demonstrate that the proposed solution can achieve a more superior performance than the present random steering beamforming strategy in terms of achievable sum rate.

Original languageEnglish
Article number8907440
Pages (from-to)1336-1349
Number of pages14
JournalIEEE Internet of Things Journal
Volume7
Issue number2
DOIs
Publication statusPublished - Feb 2020
Externally publishedYes

Keywords

  • Achievable sum rate
  • artificial bee colony (ABC) algorithm
  • beamforming
  • deployment
  • millimeter-wave (mmWave) communications
  • unmanned aerial vehicle (UAV) communications

Fingerprint

Dive into the research topics of 'Unmanned Aerial Vehicle Base Station (UAV-BS) Deployment with Millimeter-Wave Beamforming'. Together they form a unique fingerprint.

Cite this