Abstract
Industrial symbiosis (IS) is a key sub-field in industrial ecology. The field itself assists in developing strategies that support local and regional sustainable development. The evolution of IS is an important topic to be explored. In this paper, we use the system dynamics (SD) method to establish a model of the evolution of industrial symbiosis in the case of Hai Hua Industrial Symbiosis (HHIS). In this model, different scenarios for energy consumption, solid waste utilization, and wastewater utilization were set by changing the parameter values of certain input variables to analyze the evolution of HHIS. In addition, the drivers for IS evolution were investigated qualitatively in this study. The SD model was helpful for visualizing the effects and benefits of reducing the energy consumption, solid waste stock, and wastewater stock that were achieved by establishing symbiotic relationships during the evolution of IS. The results show that the optimization of energy and material flows and other symbiotic benefits can be achieved in HHIS. There are still some challenges that restrict the further evolution of HHIS. Some suggestions are proposed to promote its further evolution.
Original language | English |
---|---|
Article number | 3873 |
Journal | Sustainability (Switzerland) |
Volume | 10 |
Issue number | 11 |
DOIs | |
Publication status | Published - 25 Oct 2018 |
Keywords
- Drivers
- Evolution
- Industrial ecology
- Industrial symbiosis
- System dynamics