Undersampled dynamic magnetic resonance imaging using kernel principal component analysis

Yanhua Wang, Leslie Ying

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Citations (Scopus)

Abstract

Compressed sensing (CS) is a promising approach to accelerate dynamic magnetic resonance imaging (MRI). Most existing CS methods employ linear sparsifying transforms. The recent developments in non-linear or kernel-based sparse representations have been shown to outperform the linear transforms. In this paper, we present an iterative non-linear CS dynamic MRI reconstruction framework that uses the kernel principal component analysis (KPCA) to exploit the sparseness of the dynamic image sequence in the feature space. Specifically, we apply KPCA to represent the temporal profiles of each spatial location and reconstruct the images through a modified pre-image problem. The underlying optimization algorithm is based on variable splitting and fixed-point iteration method. Simulation results show that the proposed method outperforms conventional CS method in terms of aliasing artifact reduction and kinetic information preservation.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1533-1536
Number of pages4
ISBN (Electronic)9781424479290
DOIs
Publication statusPublished - 2 Nov 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 26 Aug 201430 Aug 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period26/08/1430/08/14

Fingerprint

Dive into the research topics of 'Undersampled dynamic magnetic resonance imaging using kernel principal component analysis'. Together they form a unique fingerprint.

Cite this