TY - JOUR
T1 - Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary
AU - Hu, Cheng Chao
AU - Zhang, Zhao
AU - Cheng, Xiao Xing
AU - Huang, Hou Bing
AU - Shi, Yang Guang
AU - Chen, Long Qing
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Abstract: The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently been extended to ferromagnets, especially for the magnetostrictive materials. Here, guided by phenomenological theories and phase-field simulations, we proposed a design strategy for obtaining the ultrasensitive magnetoelastic response at the pre-transitional rhombohedral side of ferromagnetic MPB, by further flattening the energy landscape while maintaining large intrinsic magnetostriction. To validate this, we judiciously introduced the light-rare-earth-based Tb0.1Pr0.9 system to the Co-doped Tb0.27Dy0.73Fe2 alloy, as Tb0.1Pr0.9 is an anisotropy compensation system with large intrinsic strains and the transition metal dopant of Co tends to optimize the magnetostriction. Phase-field modeling was used to determine the detailed magnetic domain evolution of the investigated multi-component Laves phase compounds, the results of which were compared with experimental results. At room temperature, an ultrahigh magnetoelastic response d33 was found in Tb0.253Dy0.657Pr0.09(Fe0.9Co0.1)2 recompensation system especially at low fields, which is superior to that of the commercial Tb0.27Dy0.73Fe2 (Terfenol-D) polycrystal. The ultrahigh magnetostrictive sensitivity, together with low raw material cost makes it one of the strongest candidates for magnetostriction applications. Graphic abstract: [Figure not available: see fulltext.]
AB - Abstract: The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently been extended to ferromagnets, especially for the magnetostrictive materials. Here, guided by phenomenological theories and phase-field simulations, we proposed a design strategy for obtaining the ultrasensitive magnetoelastic response at the pre-transitional rhombohedral side of ferromagnetic MPB, by further flattening the energy landscape while maintaining large intrinsic magnetostriction. To validate this, we judiciously introduced the light-rare-earth-based Tb0.1Pr0.9 system to the Co-doped Tb0.27Dy0.73Fe2 alloy, as Tb0.1Pr0.9 is an anisotropy compensation system with large intrinsic strains and the transition metal dopant of Co tends to optimize the magnetostriction. Phase-field modeling was used to determine the detailed magnetic domain evolution of the investigated multi-component Laves phase compounds, the results of which were compared with experimental results. At room temperature, an ultrahigh magnetoelastic response d33 was found in Tb0.253Dy0.657Pr0.09(Fe0.9Co0.1)2 recompensation system especially at low fields, which is superior to that of the commercial Tb0.27Dy0.73Fe2 (Terfenol-D) polycrystal. The ultrahigh magnetostrictive sensitivity, together with low raw material cost makes it one of the strongest candidates for magnetostriction applications. Graphic abstract: [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85091070766&partnerID=8YFLogxK
U2 - 10.1007/s10853-020-05300-3
DO - 10.1007/s10853-020-05300-3
M3 - Article
AN - SCOPUS:85091070766
SN - 0022-2461
VL - 56
SP - 1713
EP - 1729
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 2
ER -