Abstract
Ti3C2Tx MXene was cooperated with polyimide (PI) to improve the wear resistance of the PI matrix under complex working conditions. Compared to the pristine PI, the Ti3C2Tx/PI composites have excellent frictional properties, specifically, the coefficient of friction is 0.32 and the wear rate is 0.62 × 10−5 mm3/(N·m). The composites formed a transfer film on the contact surface during the friction process, and the transfer film prevents direct contact between tribo-couples. The results studied by Raman and XPS showed that the transfer film contains TiO2 that is derived from oxidized Ti3C2Tx. Moreover, the tribological mechanism has been summarized as two aspects: On one hand, the relative sliding of the Ti3C2Tx lamellae transfers the sliding stress. On the other hand, a transfer film is created between Ti3C2Tx/PI composites and steel ball during friction that prevents further wear of the material. All in all, two-dimensional MXene can effectively improve the wear resistance of the polymer matrix and has the potential to be used in friction-protective layers under complex working conditions.
Original language | English |
---|---|
Article number | 105744 |
Journal | Reactive and Functional Polymers |
Volume | 193 |
DOIs | |
Publication status | Published - Dec 2023 |
Keywords
- Lubrication
- Polyimide
- TiCT
- Tribo-chemistry mechanism
- Wear-resistant