Two-stage Training for Learning from Label Proportions

Jiabin Liu, Bo Wang, Xin Shen, Zhiquan Qi*, Yingjie Tian

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Learning from label proportions (LLP) aims at learning an instance-level classifier with label proportions in grouped training data. Existing deep learning based LLP methods utilize end-to-end pipelines to obtain the proportional loss with Kullback-Leibler divergence between the bag-level prior and posterior class distributions. However, the unconstrained optimization on this objective can hardly reach a solution in accordance with the given proportions. Besides, concerning the probabilistic classifier, this strategy unavoidably results in high-entropy conditional class distributions at the instance level. These issues further degrade the performance of the instance-level classification. In this paper, we regard these problems as noisy pseudo labeling, and instead impose the strict proportion consistency on the classifier with a constrained optimization as a continuous training stage for existing LLP classifiers. In addition, we introduce the mixup strategy and symmetric cross-entropy to further reduce the label noise. Our framework is model-agnostic, and demonstrates compelling performance improvement in extensive experiments, when incorporated into other deep LLP models as a post-hoc phase.

Original languageEnglish
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2737-2743
Number of pages7
ISBN (Electronic)9780999241196
Publication statusPublished - 2021
Externally publishedYes
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: 19 Aug 202127 Aug 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period19/08/2127/08/21

Fingerprint

Dive into the research topics of 'Two-stage Training for Learning from Label Proportions'. Together they form a unique fingerprint.

Cite this