Two-stage stochastic optimization of virtual power plant with wind power and uncertain demand

Ningwei Zhang, Yuli Zhang*, Zihan Cheng, Lijun Zhang

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The virtual power plant (VPP) has been recognized as an effective way to facilitate penetration of renewable and distributed energy resources in electricity markets. This paper introduces an adaptive curtailment strategy for a VPP comprising a wind power plant and uncertain demand, and explores the economic advantage of adaptively adjusting wind power curtailment. A two-stage stochastic model is proposed to deal with the uncertainties in wind power generation (WPG), load demand and market prices. In the model, the bid decision is made in the face of uncertainties in the first stage, while the control (curtailment) decision is made based on realized uncertain parameters in the second stage. This paper provides the closed-form optimal curtailment decision and characterizes the optimal bid decision. An efficient binary search algorithm is developed for optimizing the bid decision. By using a distribution-free approach, we show that as the prediction accuracy of WPG improves, the optimal bid decision converges toward the expected minimal power exchange, leading to a decrease in expected operational cost with diminishing marginal return. Numerical experiments based on real-world data demonstrate that compared with the existing greedy strategy and coordinated strategy, the proposed model can decrease the expected operational cost up to 16.9% and 11.0%, respectively.

    Original languageEnglish
    JournalInternational Journal of Green Energy
    DOIs
    Publication statusAccepted/In press - 2024

    Keywords

    • Wind power
    • adaptive curtailment
    • bidding strategy
    • two-stage stochastic optimization
    • virtual power plant

    Fingerprint

    Dive into the research topics of 'Two-stage stochastic optimization of virtual power plant with wind power and uncertain demand'. Together they form a unique fingerprint.

    Cite this