Two new integrable differential-difference hierarchies related to the relativistic Toda lattice equation and their soliton fusion or fission

Hongyan Wang, Guoqing Zhu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Starting from a discrete spectral problem, two new integrable differential-difference hierarchies are presented and their Lax pairs are given, respectively. The first hierarchy is related to the relativistic Toda lattice equation. Darboux transformations for the first systems in the two hierarchies are derived, respectively, accordingly their explicit solutions are obtained. By selecting appropriate parameters, we can see the phenomena of soliton fission or soliton fusion.

Original languageEnglish
Article number2250008
JournalModern Physics Letters B
Volume36
Issue number9
DOIs
Publication statusPublished - 30 Mar 2022

Keywords

  • Darboux transformation
  • Discrete spectral problem
  • differential-difference hierarchy
  • soliton fission and fusion

Fingerprint

Dive into the research topics of 'Two new integrable differential-difference hierarchies related to the relativistic Toda lattice equation and their soliton fusion or fission'. Together they form a unique fingerprint.

Cite this