Abstract
A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).
Original language | English |
---|---|
Article number | 024902 |
Journal | Review of Scientific Instruments |
Volume | 89 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2018 |